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Abstract
We describe a stochastic inversion method for mapping subsurface regions where the
electrical resistivity is changing. The method combines prior information, electrical
resistance data, other relevant data and forward finite difference models to produce
subsurface resistivity models that are most consistent with all available data. Bayesian
inference and a Metropolis simulation algorithm form the basis for this approach. The
approach enables the estimation of distributions of both individual parameters such as
center of mass and groups of parameters such as resistivity change images. Attractive
features of this approach include its ability to: 1) provide quantitative measures of the
uncertainty of a generated estimate, 2) seamlessly integrate disparate data such as
electrical resistance measurements and liquid volume measurements, 3) effectively invert
complex nonlinear forward models without appealing to unrealistic simplifying
assumptions, 4) function effectively when exposed to degraded conditions including:
noisy data, incomplete data sets and model misspecification and, 5) allow alternative
model estimates to be identified, compared and ranked. The proposed method is
computationally expensive, requiring the use of large computer clusters to make the
approach practical. A series of physical model test cases have been performed to validate
the approach. Field results using data collected during the infiltration of a salt-water
tracer are also discussed. Methods that assess MCMC convergence and summarize
interesting features of the posterior distribution are also introduced. The stochastic
inversions presented suggest that zones of resistivity change can be successfully mapped
with this approach. The stochastic tomographs accurately identify the most probable
location, shape, and volume of the changing region, and the most likely resistivity
change.

Introduction
A fundamental earth sciences problem is to determine the properties of an object that we
cannot directly observe. A variety of geophysical tomography techniques have been
developed to provide detailed subsurface information. One such technique, electrical
resistance tomography (ERT), is a relatively recent geophysical imaging technique that
provides 2-D and 3-D images of resistivity that are consistent with measurements made
on an array of electrodes. With the increasing availability of computer controlled multi-
electrode instruments and robust data inversion tools, ERT is becoming widely available.
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The value of ERT for monitoring dynamic subsurface processes has promoted new
applications in a wide range of environments (e.g. see review article by Daily et al.,
2001). Specifically, ERT has been be applied to a variety of environmental and
engineering scales and processes such as imaging of flow and transport in porous media
and fractured rock at small and large scales; unexploded ordnance detection; municipal
landfill site characterization; and monitoring the progress of in-situ remediation
processes.

The goal of any ERT inversion method is to calculate the subsurface distribution of
electrical resistivity from a large number of resistance measurements made from
electrodes. A deterministic inversion procedure searches for a single model (i.e., a
spatially varying distribution of resistivity) that gives an ‘acceptable’ fit to the data and
satisfies any other prescribed constraints. A common solution to this inverse problem
minimizes an objective function consisting of a regularized, weighted least squares
formulation. Typically, the search is conducted using iterative, gradient-based methods.
(e.g., Ellis and Oldenberg, 1994, LaBrecque et al., 1996).

The solution to the classical (deterministic) ERT inversion problem yields one model of
resistivity structure that then can be used to predict system behavior. The inversion
problem is typically complicated by a non-linear relationship between data and the
inverted parameters, state-space dimensionality, under/over determined systems, noisy
and dependent data, etc. Hence, an exact inversion is rarely possible. In fact, without
appealing to unrealistic simplifying assumptions, the severity of these issues often makes
classical optimization algorithms ineffective at estimating (i.e., inverting) those system
parameters that most consistently correspond to the observed data. Moreover,
conventional solutions provide little insight into the degree of uncertainty associated with
the inversion result.

Previous Work— Stochastic Methods:
One alternative to the classical ERT implementation is to use stochastic methods that
search for electrical resistivity models that best fit the collected electrical resistance
measurements. The literature describes a variety of stochastic methods used in
geophysical applications. Zhang et al. (1995) suggest an inversion method that seeks to
maximize the a posteriori probability density function of model parameters. Although the
method itself is very general, implementations of this method for ERT rely on several
restrictive assumptions including: a) the resistivity parameters have known covariance,
which depend only on the distance between the physical locations of the parameters, and
b) the data errors and the parameters have normal (i.e., Gaussian) distributions. With
these and other assumptions, maximizing the a posteriori probability density function is
equivalent to minimizing the objective function in the classical inverse approach. Yang
and Labrecque, 1999, proposed an alternate solution that allows a more reasonable
estimate of the parameter covariance matrix by avoiding the need to directly invert it.

Mosegaard and Tarantola(1995) and Mosegaard and Sambridge(2002), describe a second
statistical approach to inversion problems. In this approach, the inverse problem is
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reformulated as a Bayesian inference problem based upon an estimate of the a posteriori
probability distribution generated via the Metropolis algorithm. The underlying posterior
distributions combine available prior information and physical models with new
information obtained through the measurement of some observable parameters. The
technique utilizes the Markov Chain Monte Carlo (MCMC) method and a well-known
importance sampling method known as the Metroplis algorithm. A key characteristic of
this technique is that solutions are sampled at a rate proportional to their posterior
probabilities. Hence, models consistent with a priori information as well as observations
are sampled most often, while models that are incompatible with either prior information
and/or observations are rarely sampled. It allows the use of complex a priori information,
and data with an arbitrary noise distribution.

Mosegaard and Tarantola(1995) applied this algorithm to a highly non-unique, linear
inverse problem to show the method’s ability to extract information from noisy data.
They also describe an approach that allows the simultaneous use of disparate types of
data; in geophysics we may have different data sets such as electrical, seismic, and
gravity data. The authors use a “cascade rule” approach to process these different data
sets in an integrated fashion assuming the associated measurement errors are
independent. When the solution of the forward modeling is inexpensive for one (or more)
of the data sets, the “cascade rule” may render the algorithm much more efficient than the
using the Metropolis rule simultaneously on the entire data set

We will refer to the approach using the cascade rule as SIMCS (statistical inversion and
Monte Carlo sampling). SIMCS can be used to solve highly non-linear, discrete inverse
problems such as typical ERT inverse problems. For these problems, we generally have
incomplete knowledge of the relationship between data and model parameters. SIMCS
provides the means to perform a thorough resolution and uncertainty analysis. It also
efficiently samples all local maxima of the posterior distribution, provided a sufficient
number of iterations are performed.

Kaipio et al., 2000, describe the application of the SIMCS approach to medical imaging
problems using electrical impedance tomography (EIT, for the purpose of this paper,
ERT and EIT are synonymous). The authors point out that the problem is to estimate the
posterior distribution of the unknown model resistivities conditioned on the measured
transfer resistances. All the variables included in the model are characterized as random
variables. The randomness is related to our perceived uncertainty of the true model
values, and this uncertainty is expressed in terms of probability distributions. Kaipio et al
considered a variety of priors including a minimum total variation prior, a second order
smoothness prior and an “impulse” prior that penalizes the L1 norm of the resistivity.
They indicate that the posterior probability distribution measures our uncertainty based
on the resistance measurements and the prior.

Andersen et al. (2001a) describe a SIMCS approach for the Bayesian inversion of
geoelectrical resistivity data. They used random, polygonal models to represent the
layered composition of the earth, and demonstrate the performance of the method using
field data. They also describe the use of the multi-grid, Metropolis-coupled, MCMC
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approach to improve the efficiency of the method. In this approach, several Markov
chains are launched within dissimilar state spaces, and then randomly swap states
between the chains. They suggest that the multi-grid approach converges faster than the
reversible jump MCMC algorithm.

Andersen et al. (2001b) describe another SIMCS application aimed at the detection of
cracks in electrically conductive media. Their approach assumes that the cracks are
linear, non-intersecting and perfectly insulating. Using synthetic data, they demonstrate a
Metropolis-Hastings updating scheme that assumes that the number of cracks is known a
priori. They also considered a reversible jump MCMC approach that allows updating of
the number of cracks, and a simulated tempering method that increased the computational
efficiency of the overall process. They conclude that their approach is promising and
robust, but also computationally intensive.

Our Approach -- Stochastic Engine
Here we describe a type of SIMCS algorithm that incorporates resistance measurements,
numerical forward simulators of subsurface electrical resistivity, and a priori knowledge
to provide distributions of resistivity change that are likely to be present in a subsurface
environment. The approach is based upon a statistical inference paradigm called the
Stochastic Engine (SE) (Aines et al., 2002, Glaser et al., 2002, Newmark et al., 2001).
This methodology combines disparate types of observational data such as cross-borehole
electrical resistance measurements, and liquid volume data to produce a consolidated
body of knowledge indicating those subsurface plume configurations and system
parameter values which are most consistent with the available data and forward models
(i.e., system identification).

As with all SIMCS approaches, Bayesian inference and a Metropolis-type simulation
algorithm form the basis for our approach. There are two major components to the
approach:

i) A base representation specifying the form that the resistivity configurations (i.e.,
states) of the system may assume. This representation provides: i) a framework for
incorporating up front problem specific information and restrictions, ii) the basis for
generating the forward model predictions conditioned on an assumed system state,
and iii) a specification of a general element in the support of the estimated posterior
distribution.

ii) A Markov Chain Monte Carlo (MCMC) simulation algorithm that generates samples
according to the unknown posterior distribution. This is accomplished by first
proposing samples from a distribution of possible resistivity configurations that are
consistent with our prior data. Then, we use a Metropolis-type decision algorithm to
accept or reject the proposed states according to their consistency with the observed
data. After a sufficient warm-up period (called burn-in), the accepted states
constitute a sample from the posterior distribution.

There are two key differences between the SE approach and the resistivity inversion
approaches described earlier. In the SE approach, we make use of multiple disparate data
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types whereas these other approaches typically use a single data type (resistance data).
Furthermore, the goal of the other approaches is to find a single resistivity model that is
consistent with the data, whereas the goal of the SE inverse process is to find alternative
models that are consistent with all available data, and to rank them according to their
probabilities. Details of the SE inverse approach are presented next.

Base Representation - Subsurface Plumes
The representation of the state space S (i.e. defining the individual resistivity
configurations and their neighborhood structure) is critical to the overall effectiveness of
the method. In those cases where traversal of the state space is expensive and/or time
intensive (e.g., computationally intensive forward models such as those used for 3D
ERT), the state representation must designed so that the number of degrees of freedom in
the problem is kept within reasonable limits. The resistivity perturbation model used to
specify neighboring states is very efficient in this respect. We use a stochastic model that
generates neighboring configurations based upon an identified spatial distribution of
resistivity change. The properties of subsurface plumes often depend on lithology or
facies and because of this, we have chosen a categorical simulation approach. The main
advantages of this approach are: (1) the range of possible resistivity magnitude is binned
into a collection of discrete categories thereby constraining the size of S, and (2)
geologic and hydrologic insight on the spatial characteristics of the subsurface plume can
be exploited.

Liquid leaks from tanks and subsurface fluid injection (e.g., steam, CO2, or water floods)
can produce regions where the resistivity changes as the released liquid penetrates the
rock or soil mass. When time-lapse electrical resistance measurements are made before
and during a release sequence, changes in the electrical resistance data can be used to
map the subsurface regions penetrated by the liquid. In this case, the goal of the SE
simulation process is to determine the most probable shape, location, resistivity, and
volume of the region penetrated by the liquid.

Our base representation takes advantage of prior information about subsurface plume
characteristics. It assumes that the system of interest consists of a zone of changing
electrical resistivity embedded within an otherwise homogeneous volume. We further
assume that the changing volume can be described with 2 – 10 contiguous sub-volumes.
The range of possible of resistivity changes is assumed known a-priori. While the sub-
volumes have to be contiguous, they can overlap and have varying size, shape and
resistivity properties thereby allowing the modeling of plumes with complicated
resistivity structure.

For some subsurface injection applications, other data such as the volume of the injected
liquid, temperature, pore water electrical conductivity is routinely collected. One
advantage of the base representation framework is that these other data can be used to
constrain characteristics of the representation for the plume region. For example, in
situations where the released liquid volume is known, the volume of the proposed region
is forced to be consistent with the released liquid volume. This is accomplished by using
a suitable petrophysical model (e.g., Archie’s equation or the Waxman-Smits equation
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(Hearst et al. 2000) that relate electrical resistivity to other parameters of interest such as
liquid saturation of the pore space.

Markov Chain Monte Carlo
The Markov Chain Monte Carlo method (MCMC) provides a flexible framework that can
be adapted to perform a variety of analyses and inference tasks. It uses a Markov chain
state/transition structure to control the sampling process. MCMC techniques enable
simulation from a targeted distribution by embedding it as a stationary distribution of an
ergodic Markov chain and simulating the chain until it approaches equilibrium. For
Bayesian analysis, we are able to adapt the approach to simulate and estimate posterior
distributions that embody our available prior information and newly acquired
observational data. MCMC algorithms can assume a variety of forms with the most
useful to us being the Metropolis framework.

The SE approach is a derivative of the Metropolis algorithm (Metropolis et. al., 1953) as
described by Mosegaard and Tarantola (1995). This particular MCMC algorithm has
demonstrated significant potential in solving inverse problems involving complex
physical systems and supports several key enhancements necessary to mitigate the
combinatorial demands underlying the MCMC methodology. Within our stochastic
framework, the solution to an inverse problem is an estimate of the posterior probability
distribution defined on the corresponding space S  of possible solutions (otherwise
referred to as states). For any potential solution s0 ∈ S , the SE will provide an estimate of
the probability and confidence that state s0  is indeed the true solution to the given
system. This allows future analysis to focus upon the most likely explanations of system
behavior – thereby improving both the efficiency and effectiveness of follow-on efforts.
Moreover, results generated from the SE (i.e., the estimated posterior distribution,
predictions, hypothesis testing, etc.) may be incrementally updated as more data becomes
available.

The inverse problem under consideration may be described as follows. Let D and M
denote the data space and model space respectively, and suppose that there exists a
mapping G  such that:

d = G m( ) (2)

where m ∈ M  is a parameter vector describing the state of the system of interest and
d ∈ D  is a vector of measurements taken on that system. The inverse problem occurs
when a vector of data values is observed, say d0 , and we want to determine the value of
the parameter vector m0  that gave rise to d0 . In geophysical ERT applications, this
problem is substantially under-constrained and ill-posed. In such cases, the search for a
deterministic solution for d0  that is unique and possesses a high degree of confidence is
virtually impossible, and hence a probabilistic solution is likely to be superior to any
classical deterministic optimization approach.

The stochastic approach employs a variation of the Metropolis algorithm to generate a
sequence of samples from M  at rates proportional to their posterior probabilities. These
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samples enable the estimation of the posterior distribution FM D  using the sample

frequencies corresponding to the sampled models m ∈ M . By design, the models
generated most frequently are most consistent with both our prior information on M  and
the observations being processed. Assuming mild regularity conditions, the estimated
posterior distribution ˆ F M D  converges strongly to the true underlying distribution FM D .

This estimate is the basis for all subsequent analysis and inference including estimation,
prediction, confidence assessment and risk/reward trade-off analysis.

Given that the information used to drive the simulation is taken from two distinct sources
(prior information and observational data) the sampling process can be viewed as
consisting of two separate components. The first component generates samples according
to an identified prior distribution (m) defined over the model space M . These samples
are called proposal states and constitute possible solutions to the inverse problem, (refer
to the right hand side of Figure 1, base representation box). Specifically, this sampling
process is manifested as a Markov chain, Q, with one-step transition probabilities
between states m ∈ M  designed to produce a long-run stationary distribution equal to the
prior (m). In statistical terms, Q samples (m).

The second component takes the form of a decision process that either accepts or rejects
the proposal sample generated from the a-priori Markov chain (shaded area labeled
“stage 1” in Figure 1). For each visited state, forward simulators are used to predict
values of measurable parameters such as electrical resistance. These predictions are then
compared to corresponding measurements to determine the likelihood L(m ) that the
given state m ∈ M  produced the observed data. An accept/reject decision based upon
this likelihood is used to modify the prior sampling process. The result is a new Markov
chain, R, which samples the posterior distribution, Ρ(m ).

Formally, Bayes rule relates the prior and posterior distributions as follows:

Ρ(m ) = k (m)L(m) (3)

The likelihood L(m ) is a measure of the degree of fit between the data predicted
assuming the model m and the observed data, and k is a normalization constant. For this
study, we assumed a likelihood function of the form:

L(m ) = k exp − dpred , i − d0 ,i( )n

i
n

i

∑
 

 
 
 

 

 
 
 (4)

where dpred ,i  is the predicted data for a given model m, d0, i is the vector containing the

observed measurements, i is the estimated data uncertainty, andn ≥1. For the results
described below, we assumed that n = 2 . Note that Eq. 4 assumes that the estimated data
errors are uncorrelated.
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The decision to accept or reject a proposed state is made on the basis of likelihood
comparisons as indicated by the by the “stage 1” box, right hand side of Figure 1.
Suppose that the current state of the Markov chain is mi and that a randomized rule based
upon the one-step transition probabilities propose a move to state m j . If these transitions

were always accepted, then the simulation would be sampling from the prior distribution.
But, instead suppose that the proposal transition is only accepted according to the
following rules:

1) For both the current and proposal states mi and m j , compute the respective

likelihoods L(m i) and L(m j)  that these models produced the observed data.

2) If L(m j) ≥ L(m i), then accept the proposed transition with probability 1 and move

to state m j . (Note: The algorithm always accepts the transition when the new state

provides a better explanation of the data than the current state.)
3) If L(m j) < L(m i), then use a randomized decision rule and accept the proposed

transition with probability L(m j ) L(m i ) <1 and move to state m j . Otherwise,

transition back to state mi. (Note: By allowing the random walk to transition to a
less likely state, the process can move out of a local extrema).

The samples generated through this three-step process will have a limiting distribution
that is proportional to the desired posterior distribution Ρ m d0( ). That is, the search tends

to hover in regions of space M containing states with greater prior propensities and higher
likelihoods.

Since we have observational data of differing types (e.g., ERT and flow data), our
approach takes advantage of the “cascade” rule (Mosegaard and Tarantola, 1995) In these
cases, the errors in prediction are often independent and hence the total likelihood
expression factors into distinct terms – one for each data type. Hence, for the above
example the total likelihood expression factors as follows:

Ltotal(m) = LERT(m)∗ L flow(m) (5)

This probabilistic structure can be leveraged to streamline the transition process
employed by the SE. Mosegard and Tarantola (1995) indicate that performing a single
Metropolis transition step (step 3 above) that uses the entire likelihood expression
Ltotal( m) is equivalent to performing a sequence of Metropolis steps – one for each term
in the above expression. Once a model is proposed by the prior distribution, the forward
model is solved initially for the first data type alone (step 1 as illustrated by the stage 1
box in Figure 1). At this juncture, the proposed model may be rejected or accepted (steps
2 and 3 above). If the decision is to reject the proposal, then the forward models in stage
2 (Figure 1) are not executed. The Markov chain returns to the current state, a new state
is proposed and the decision process begins anew with the first data type. If the decision
at this stage is to accept the proposal, the next data set is considered in stage 2, its
corresponding forward model is run and a decision to accept or reject is made based upon
its likelihood. This continues through all of the different types of data until the proposal
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either is accepted at all stages or is rejected at one stage and starts over at the beginning
of the sequence. Note that proposals accepted by both stages are ones that are most likely
to be consistent with prior data and stages 1 and 2 observational data. Also, this approach
can easily be extended beyond two stages to incorporate additional types of data. The
results we show in the next section made use of only a single stage.

This staging approach allows the processing order of the likelihood terms to be arranged
according to increasing runtime complexity of the corresponding forward model since the
order of the stages does not affect the posterior estimate. However, when forward models
in the various stages require vastly different computation times, it is wise to put the faster
model in the first stage because generally a higher number of models are evaluated in the
initial stage. Thus, stage order does affect overall computational time of the simulation.

The right side of Figure 1 illustrates how the MCMC search locates regions of high
likelihood within space S . The bottom landscape represents space S ; the states within
this space are all consistent with prior information. Also shown is an example state that is
of one of the many potential states, s0 ∈ S . The height of the hills identifies regions of
S where states that are consistent with prior information are located. Note that some of
the peaks grow taller (and others shorten) as the Markov chains(s) tend to hover in
regions that are consistent with data analyzed in stages 1 and 2. The taller peaks identify
regions where states are most consistent with the data (have a higher likelihood); states
that are inconsistent with the data occupy the flatlands. We will refer to the peaks as
modes in subsequent sections. The landscape associated with stage 2 contains samples of
the posterior distribution Ρ m d0( ) that will be analyzed to draw conclusions about the

system under study. The presence of multiple modes in the posterior distribution
indicates that there are alternative models that explain the data. The likelihoods of the
different modes (i.e., peak heights) provide a way with which to rank the alternative
models; the highest likelihood mode contains models that best explain all available data.
The width of the peaks indicates the degree of state variability within each mode.

One major advantage of our stochastic approach is that knowledge of the posterior
distribution allows the uncertainty of the generated estimates to be quantified. This
provides the basis for: i) the objective assessment of competing hypotheses when the
available information isn’t sufficient to definitively identify the system state, and ii) the
propagation of uncertainty in modeling results through to follow-on predictions. Sources
of uncertainty such as measurement error, contradictory data, lack of sensitivity or
resolution, incomplete surveys, and non-unique relationship between measurements and
inverted parameters are explicitly considered by this approach. Problems with many
secondary extrema, a non-unique inverse, and/or contradictory or sparse data can be
inverted using the SE. Even when conventional inversion and analysis methods are able
to address complex problems, they provide only a single “best” answer, throwing away
much information and precluding other likely possibilities. Alternatively, the SE allows
continuous integration of new data into the analysis, improving understanding and
reducing uncertainty. In addition, the methodology is generally applicable to ill-posed,
highly non-linear, poorly constrained, multi-dimensional problems due to its forward
processing scheme (i.e., the simulators are all forward models).
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There are a variety of key issues that must be addressed during the implementation of this
methodology. The most fundamental concern is that the Markov chain must be designed
so that a limiting stationary distribution actually exists and the process converges. For
this to happen, the transition probabilities must be defined so that the process is aperiodic
(state transitions are not cyclical, state sequences do not repeat) and irreducible (it is
possible to move from any given state to any other). Our approach also assumes that the
transition probabilities are not known a-priori. This assumption requires that:

p(statex → state x+1) = p(statex+1 → statex ) (6)

That is, the probability of moving from one state to another is the same as the probability
of moving in the reverse direction.

Once we are assured of convergence of the simulation, the critical issue becomes its rate
of convergence. Key factors affecting the convergence rate include: (i) the strength and
quality of the prior distribution (m), (ii) the representation, resolution and
dimensionality of the state space M , and (iii) the structure of the likelihood surface. The
convergence rate of the process and the forward model runtimes effectively control the
efficiency and runtime of the overall SE simulation.

Base representation resolution is critical; if the resolution is too fine or involves a high
dimensional state vector, the convergence may be slowed beyond practical limits. The
step size chosen (i.e. the resolution of the state space) controls the neighborhood size
around a given state. If too small, movement through the state space will be slow, and it
will take longer to move past local extrema in state space M . When the step size is too
large, increased rejection ratios (number of states rejected/total number of states
evaluated) are likely thereby slowing the convergence rate. By trial and error, we
discovered that a randomized step size that sometimes took smaller or larger steps
provided a reasonable solution to this dilemma.

Closely related to the step size is the structure of the likelihood surface being traversed.
When the surface is exceptionally steep, the process will be slowed due to high rejection
rates. This situation occurs when the process attempts to move off a steep peak in
likelihood space and ends up proposing states having much smaller relative likelihoods
that are almost always rejected. This slow mixing process (i.e., how well the process
moves through the state space) can be mitigated in several ways including the use of
multi-resolution or the Langevin diffusion methods. Finally, the choice of the prior
distribution may also significantly impact convergence it controls the proposal of
candidate states. In general, the closer the prior is to the posterior, the faster the process
converges.

Posterior Analysis
The posterior distributions estimated via the MCMC provide the basis for inference by
performing a variety of subsequent analyses including parameter estimation, confidence
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assessment and risk analysis. Posterior analyses methods will be discussed in detail
subsequent sections.

Resistivity Change
Electrical resistivity changes are typically created by hydraulic, chemical and thermal
changes in the subsurface. Thus, monitoring natural or artificially induced changes in
resistivity can often provide valuable information about flow and transport processes,
including the effectiveness of remediation strategies for clean up of contaminated sites
Applications such as monitoring the progress of water and liquid contaminant movement,
monitoring of cleanup processes such as air sparging, and steam injection, and the
detection of leaks from tanks containing hazardous liquids have been reported in the
literature(Binley et al., 1996, 2001, Daily et al., 1987, 1992, Kemna et al., 2000,
LaBrecque et al., 1996, Ramirez et al., 1993, 1996, Slater, 1997). In all these case,
electrical resistance measurements are made before and after the start of a process that
changes the subsurface electrical resistivity distribution. Tomographs of electrical
resistivity change can be constructed in variety of ways such as: a) by inverting the
“before” and “after” data to produce tomographs of electrical resistivity, and then
substracting the two tomographs, or b) by calculating differences in the raw transfer
resistances and inverting the differenced data. LaBrecque and Yang (2000) developed an
approach based on the latter strategy that uses a modified data vector formed from
differences in measurements. Their approach not only conditions parameter estimates on
some background state but also significantly reduces computational effort in the
inversion.

An alternative approach related to strategy “b” utilizes a ratio of two impedance datasets
in the inversion. In this method, a new data vector, *

rd , is formed from:

 dr
* =

dt
*

d0
* f* ( hom

* ), (1)

where *
0d is the data vector at some reference state, *

td is the data vector at some time t

and hom
* is an arbitrarily chosen homogenous conductivity.

Inversion of the new dataset *
rd in the normal manner then results in an image that will

reveal changes relative to the reference value hom
* . Most applications of this approach

have been in DC resistivity problems where only impedance magnitude (i.e., resistance)
is used (see Daily et al., 1992; Ramirez and Daily, 2001); however, it may also be applied
to the general complex resistivity problem. We will use this resistance ratio-approach to
produce the results described later in the paper.

Results and Discussion:
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Physical Model Results
We have used physical models with a state space structure that is readily diagnosed in
order to develop a better understanding of the Stochastic Engine approach. The model
used consisted of various targets immersed in a tank filled with water. The model
included 4 vertical electrode arrays, each having 15 electrodes (refer to Figure 2). The
arrays were submerged in water and a variety of solid acrylic and porous (sand-lead
mixture encased in a nylon mesh) targets having different electrical resistivities were
inserted at various locations between the electrodes. The water resistivity was 16 ohm-m,
the sand-lead mixture had a resistivity of about 40 ohm-m, and the acrylic resistivity was
approximately 1010 ohm-m.

Issues such as the accuracy of the inverted location, shape and change magnitude of the
inversions were evaluated. For these inversions we assumed that the target could be
sufficiently described by two contiguous or overlapping parallelepipeds. Their shape,
location and contrast were allowed to vary. Uncertainty arises from the inherent errors
(measurement and modeling) and the non-unique relationship between inverted
parameters and measurements.

Figure 3 compares the stochastic inversion results for the sand-lead target and the
equivalent deterministic inversion. The top left image is a vertical section of the actual
target showing its shape and location. Given resistivity contrasts in typical geophysical
applications, the target has a low-contrast (resistivity only 2.5 times as high as the
surrounding water). We assumed that the resistivity change (as indicated by a ratio) was
discrete and between 0.5 and 16.0 (0.5, 1.0, 2.0, … ,16.0); 1.0 indicates that the target’s
resistivity equals that of the surrounding water, and values above 1.0 indicate that the
target’s resistivity is larger than the surrounding water. The inverse process searched for
the most likely location, size, shape and contrast of the target.

The relationship between the base representation and the posterior distribution is
straightforward for this problem. We summarized sample information by calculating
voxel-wise means of all the images generated during the simulation of the posterior
distribution. The Fig. 3 top middle and right frames show the voxel-wise average
resistivity ratio for all the sample images. These graphs show similar shape and location
as the actual target. The resistivity ratio magnitude lies in the range of 2.0 – 2.9, while the
actual target value is 2.5. The top right image shows an iso-surface representation.

The lower row of images in Figure 3shows a deterministic tomograph calculated by the
inversion algorithm described by LaBrecque et al, 1999. The bottom left image displays
the results using the same color bar range as the stochastic image in the middle of the top
row. The deterministic inversion appears at approximately the same location as the
stochastic result but shows a resistivity ratio (about 1.2) that is much lower than both the
target and the stochastic image. The bottom middle and right images show the
deterministic result using a much narrower color bar range so that image details become
easier to observe. The bottom middle image shows that the lateral and vertical extent of
the deterministic anomaly are somewhat exaggerated.
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The larger size of the deterministic result is caused by the approach seeking to find a
unique, robust solution to the inverse problem. Direct linear inversion is not possible
because it only applies to linear problems and the ERT problem is generally non-linear
and underdetermined. The typical ERT problem is ill-conditioned, and therefore requires
regularization in order to stabilize the solution and obtain meaningful results (Park and
Van, 1991, Shima, 1992, Ellis and Oldenburg, 1994, Sasaki, 1994, LaBrecque et al, 1996,
Morelli and LaBrecque, 1996). The most common regularization used constrains the
parameter search by penalizing models with large “roughness” (the inverse of
smoothness). The deterministic inverse algorithm uses a roughness-constrained, least-
squares, iterative approach that searches for a single model that fits the data within a
specified tolerance. Using this approach it is possible to obtain meaningful “smooth”
parameter models even when the problem is underdetermined.

A disadvantage of this methodology is that roughness-based regularization distorts the
resistivity values between adjacent elements thereby producing models that have reduced
contrast and exaggerated extent. This is the reason for the somewhat distorted anomaly in
the deterministic result shown in Figure 3.The size of the solution space is much larger
for the deterministic approach because it includes many more possible target
configurations such as discontinuous zones, infinite number of resistivity contrasts etc.
We note that it is possible to incorporate prior information in deterministic inversions
(e.g., Rodgers, 1976, 1990) but we did not consider it here.

Next, we consider a very high contrast (approx. 109), acrylic target. The inversion results
are presented in Figure 4. We assumed that the possible resistivity contrast range was
somewhere in a range of discrete steps (100, 104, 105, 106, 107, 108). The inverse process
searched for the most likely location, size, shape and contrast of the target. The top left
frame shows the actual target located on the left side and just below the center of the 3D
block. The lower left and lower right frames show two different views of the stochastic
inversion results. We elected to show voxel-wise location probability instead of the
average resistivity ratio because the latter gives very misleading results when the contrast
between target and surrounding water is very large. Suppose that our posterior
distribution produced 10,000 samples, and that at a given voxel, 9999 samples have a
value of 100 and only one sample has a value of 107. For this case, the average resistivity
ratio is about 103 even though practically all voxels have a value of 100. Thus, instead of a
voxel-wise resistivity ratio, we chose to use voxel-wise location probability. The latter is
calculated on a per voxel basis, by counting the number of posterior samples that contain
a portion of the anomaly and dividing by the total number of posterior samples.

The results in Figure 4 show that the location and size of the inverted anomaly are similar
to the actual target. It is interesting to note that our approach produces anomalies with
fairly sharp boundaries even when the target to background contrast is many orders of
magnitude. The right frame in the figure shows the inversion results for a “blank” target;
i.e., two measurement surveys were collected a few hours apart with only water present.
Any changes in the data are the result of measurement error. The “blank” result shows
how these errors propagate through the stochastic inversion process. Note that while the
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voxel-wise probabilities are not equal to 0.0, they are much smaller than those obtained
when the acrylic target is present.

The models considered in Figures 3 and 4 are analogous to geophysical cases where one
is interested in detecting subsurface changes in resistivity caused by various processes
such as hazardous liquids leaking from tanks, and steam or CO2 injection. We next look
at an application of the SE method using field data.

Field results - Tank Leak Detection
Large volumes of hazardous liquids are stored worldwide in surface and underground
tanks. Frequently these tanks are found to leak, thereby resulting in not only a loss of
stored inventory but, more importantly, contamination to soil and groundwater. There are
two methods of detecting leakage from tanks: monitoring the liquid level of waste in the
tanks and monitoring the soil surrounding the tanks for leaks. When the spillage of the
liquids changes the electrical resistivity of the soil or rock in a measurable way, the latter
monitoring strategy maps the electrical resistivity around and below a tank over time.

Electrical resistance data was collected during a field experiment that simulated leakage
from a large metallic tank. For testing, an electrical equivalent (saline solution) was used
instead of the real contaminant to preserve the environmental quality of the test site. The
test site used for this work is part of the 200 East Area in the Hanford Site, located near
Richland, Washington (additional details about the test site and testing are provided by
Barnett et al., 2002). The near surface sediments at the test site consist primarily of fine
to coarse-grained sand displaying plane lamination and bedding. The field experiments
were performed under a 15.2 m diameter steel tank mockup. Figure 5 shows the layout at
the leak detection experiment site.  This empty steel tank contained several built-in spill
points (one of which is shown). The bottom of the tank is located 1.5 m below ground
surface.  Sixteen boreholes with eight electrodes in each surrounded the tank.  The
electrodes were spaced every 1.52 m between the surface and 10.7 m depth. The water
table was located well below the deepest electrode location. The diametrical distance
between boreholes was 20.7 m.

Hypersaline solution was released from a point near the tank's center (refer to Fig. 5) over
a 52 hour period. The release rate averaged about 43 liters/hour.  The liquid consisted of a
sodium-thiosulfate solution with a conductivity of about 5 S/m (36 wt%). We note that
this hypersaline fluid has similar electrical conductivity and density to the real Hanford
tank liquids. ERT surveys were made before, during and after the brine release using a
dipole-dipole approach.

Figure 6 shows the results of a stochastic inversion (left panel of images) and the
corresponding deterministic inversion (right panel of images). The results represent the
inverted resistivity change caused by the release of approximately 2160 liters of brine
solution. The dimensions of the 3D block s are 28 m (along each horizontal axis), and 13
m (height). The stochastic results show the pixel-wise average resistivity ratio, calculated
using approximately 1200 posterior samples. The deterministic results were calculated
using the same gradient search method described in the prior section. The slices shown in
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the top row of images are oriented North-South. The bottom row of images shows iso-
surface views, where the white bar over the color bar indicates the range of
transparencies used to render the iso-surfaces.

Both methods show that the resistivity decreased (ratios below 1.0 represented by the
blue and green colors, top row of images) directly below the release point, and the zone
of change extends more to the East of the release point than to the West. There are also
differences between the images. The stochastic image shows much stronger resistivity
changes reaching values of 0.2 (i.e., the invaded soil’s has 1/5 the resistivity of the pre-
release value). Also, the changing region in the stochastic image shows a smaller volume.
The deterministic image shows a substantially weaker change of 0.8. The stochastic
anomaly is largely constrained to immediately below the release points whereas the
deterministic anomaly shows near surface changes near the block corners and away from
the release point.

A drill-back program that would have independently mapped the plume’s extent was
outside the scope of this work. Instead, we are forced to use circumstantial evidence to
evaluate the results. Ward and Gee (2001), and Gee and Ward (2001) describe the results
of field tests, laboratory tests and numerical simulations of the movement of hypersaline
solutions through the vadose zone. Their tests were conducted at a site located a few
hundred yards from the Mock Tank leak test facility where our results were obtained;
both sites are known to have similar geology. Ward and Gee suggest that hypersaline
fluids move through the vadose zone along finger-like preferential flow paths due to the
much higher density of the hypersaline solution. Gee and Ward point out that hypersaline
plumes tend to be more compact, move deeper and show less lateral spreading than low
ionic strength solutions.

We propose that the stochastic result in Figure 6 is a more realistic representation of the
plume than the deterministic result due to the following reasons.

1) The resistivity change in the stochastic anomaly is much stronger; we note that
the released hypersaline fluid is about 100 to 1000 times more electrically
conductive than the native pore water; the exact figure is difficult to ascertain due
to the effects of previous conductive tracer releases at site. However, we believe
that the stronger changes in the stochastic image (values near 0.2) are more likely
to be representative of the plume’s properties because of the high conductivity of
the released fluid.

2)  The stochastic anomaly is more compact, and finger-like, thereby suggesting
preferential flow path behavior consistent with the observations of Ward and Gee
(2001) and Gee and Ward (2001). The deterministic anomaly shows more lateral
spreading due to the regularization approach used.

3) The deterministic anomaly shows unrealistic features such as those located near
the top of the image block, away from the release point; in contrast the stochastic
image shows the bulk of the changes concentrated directly below the release point.

Most tank managers want answers to the following. a) Is there a leak? b) How much
liquid has been released? c) What are the location, volume, and extent of the
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contaminated zone? We attempt to answer some of these questions using the sequence of
inversions shown in Figure 7. The inversions represent changing subsurface resistivity as
the volume of released fluid increases from 340 to 2160 liters. Along a given column,
released volume increases from the top row to the bottom row of images. The left column
images shows voxel-wise location probability. We believe that the location probability
images help us determine if there is a leak. The acrylic and “blank “ target results (shown
in Fig. 4) are analogous to “leak” and “no leak” conditions in the tank leak application;
note that the “blank” results in low probabilities (below 0.1) that extend over a broad
region of the 3D block. When the acrylic target is introduced, the probability increases to
about 0.2 in a localized region and drops to near 0 on the rest of the block. The tank leak
results (Figure 7) show similar qualitative trends. At low volumes: the location
probabilities average about 0.10 and extend over a broad, ellipsoid shaped region. At
higher volumes the location probability increases to values near 1.0 extending over a
relatively narrow zone. Figures 4 (“blank result”) and 7 suggest that low probability
values that spread out evenly through out the 3D block indicate of a “no leak” condition.
As the released volume increases, probability values will increase in narrow zones and
drop to near 0 elsewhere, thereby indicating zones of resistivity change associated with
leaks.

Similarly, the voxel-wise average resistivity ratio images can be also used to infer the
tank leakage (middle column of images in Figure 7). The right column of images shows
an iso-surface view of the same results; resistivity ratios from 0.9 to 1.0 are transparently
rendered. We suggest that this aspect of the posterior distribution allows an analyst to
estimate the location, volume and shape of the contaminated zone. As expected, the
voxel-wise average ratio decreases (i.e., the soil becomes more electrically conducting)
from about 0.95 (top middle row, released volume = from 0.34 m3) to about 0.2 (bottom
middle row, released volume = 2.16 m3). Also, the vertical and horizontal extent of the
anomaly grows with increasing released volume. The sequence shown suggests that the
plume represented by these inversions is behaving as expected (strong changes along a
relatively narrow zone near the release point), thereby increasing our confidence in the
reliability of the stochastic inversions.

Once the presence of a leak has been detected, tank managers may wish to plan
mitigating or clean-up activities. Posterior distribution samples can also be used to
estimate the probability of various parameters of interest.  For example, information such
as the volume of the anomaly or the location of the anomaly’s center of resistivity change
may be useful (CRC—is computed using the equation for center of mass but substituting
resistivity change for mass). Figure 8 shows the parameters’ estimated posterior
distributions based upon the generated posterior image samples.. The left column plots
show how the CRC moves with increasing released liquid volume. Early on during the
spill sequence (released volume = 0.34 m3), the most likely x and y coordinate position is
about 14 m near the tank’s center (the release point is located at the tank’s center, x = y =
14 m). As the released volume increases, the most likely x coordinate value changes to
about 11.5m, indicating that the CRC is moving to the East. Likewise, the most likely y
coordinate value changes to about 16 m, indicating that the CRC is moving slightly to the



19

South. The Z coordinate values moves from about 6 to about 8 m (the depth increases by
2 m).

Similar observations can be made regarding the volume of the invaded zone (VIZ – the
volume of soil invaded by the plume: sum of all voxel volumes showing resistivity ratios
indicating a change, i.e., values < 1.0). Early on during the release sequence (released
volume = 0.34 m3), the most likely VIZ value is about 120 m3. As the released volume
increases, the likely VIZ value also increases, as expected. The 2.16 m3 plot suggests that
the most likely value is about 400 m3 but there is a significant probability that it could be
as low as 300 m3.

Convergence:
The output from our MCMC inversion approach provides a sample from the posterior
distribution, which is the conditional probability distribution of the state of nature, given
the data. The inversion results described so far are calculated only using samples
generated after stationarity of the Markov process is achieved. All samples generated
before that point are discarded. Here we discuss the techniques used to demonstrate that
stationarity has been attained; i.e., the point in the simulation in which the samples
generated are representative of the posterior distribution because they are unaffected by
the starting point of the Markov chain(s) and have explored sufficiently the distributional
structure.

In our application, the state of nature refers to a complicated, multi-dimensional
configuration like the subsurface zone that is changing electrical properties over time. It
may also refer to a particular related parameter of interest such the center of mass or the
volume of the region. The posterior distribution can be thought of as the best stochastic
description of the state of nature that incorporates all pertinent physical and theoretical
models as well as observed data. Characterization of the posterior distribution is the
primary goal in the Bayesian statistical paradigm. In our applications, however, analytical
calculation of the posterior distribution is impossible, and it is only feasible to draw a
representative sample from the distribution of interest. Asymptotic results ensure that the
sample ultimately spans the entire posterior distribution and reveals the actual state
frequencies that characterize the posterior. In statistical terms, the sample forms an
ergodic Markov chain with a stationary distribution P(m). This means that once the
chain has taken a sufficient number of steps, T0, the (unconditional) distribution of the
state, x(T), at any step T ≥ T0 (i.e., is “stationary”, collecting more samples will not change
the posterior distribution), and is P(m). We call T0 the “burn-in” period. Once burn-in
has occurred, a chain has essentially “forgotten” where it started, stationarity has been
achieved, and the remaining samples are from the desired posterior distribution.

The diagram on the left side of Figure 9 schematically illustrates some of the key ideas
pertaining to convergence. The area within the rectangle represents the space of possible
solutions, S . The three curves represent the route followed by three Markov chains, each
one having a different starting point.  The posterior distribution region is located within
the dashed elliptical region. The bull’s eye symbols identify the location of two modes in
the posterior distribution. All samples collected within the burn-in period are discarded
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because the chain’s route is still influenced by the chain’s starting point. After burn-in,
the Markov chains have converged when the route followed by all three chains is
unaffected by the chains’ starting points, all have sampled both modes, and indicate
similar heights for the mode peaks.

The plots on the right side of Figure 9 illustrate two types of metrics that: a) identify the
“burn-in” period and determine the Markov chain segment that is stationary, and b)
confirm stationarity by a normality assessment. Glaser (2003) provides details pertaining
to these metrics; here we summarize some of the key points. The top plot (Gelman-Rubin
diagnostic) is a heuristic metric that uses multiple parallel Markov chains to
simultaneously estimate the burn-in period length T0 and corroborate the claim that
remaining samples come from a stationary distribution. It is based on the idea that
different Markov chains having different starting points share a common, but unknown,
limiting distribution, the posterior P(m). When the metric levels off to a value near 1.0
and approximately remains at this level, it suggests that the burn-in period ended at
iteration T0; posterior samples are being accumulated from this point on. Also, stable
values near 1.0 suggest that samples after T0 are an adequate characterization of the
posterior distribution, as exploration of the parameter space has apparently succeeded in
visiting all the significant distributional modes. For the example shown, the burn-in
period appears to end around iteration T0 = 800.

The bottom plot in Figure 9 provides confirmatory evidence that the posterior is being
sampled by showing that averaged samples after burn-in are normally distributed. When
the central limit theorem is applied to MCMC algorithms, it asserts that the value of a
parameter averaged over a large number of iterations after burn-in is approximately
normally distributed. Thus, when samples from a stationary Markov chains are used,
samples of a given parameter of interest (in our case, the centroid of the changing region)
should be normally distributed. Larger p-values provide stronger evidence of normality.
A p-value below 0.05 is generally considered reason to question the validity of the
assertion of normality. The lower plot in Figure 9 provides strong evidence of normality.
Taken together, the plots suggest that the Markov chains in this example have converged
to the limiting posterior distribution (m), and that we can reliably employ these
posterior samples to estimate the parameter(s) of interest.

Posterior Analysis -- Clustering
The inversion approach described here produces a large number of samples from the
posterior distribution. In most applications, it is necessary to summarize the relevant
information in the posterior distribution so that it can be visualized and understood. In a
state space M , there are hills and valleys in the likelihood surface, their height is
proportional to the probabilities for each of the states m j , and the location of a given

peak is commonly referred to as a mode. The posterior analysis method used to produce
previous images (voxel-wise averages) provides useful summary of samples from a uni-
modal posterior distribution. But, when the posterior distribution is multi-modal, this
approach can produce misleading results.
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We now consider an approach based on clustering instead of the simple voxel-wise
averages described earlier. In the 1-D case, a simple histogram plot reveals if the data
have come from a uni-modal distribution or not. In the 2-D case also, a surface plot will
reveal the same information although a clustering operation will reveal the location and
degree of concentration about the modes in both. Images are highly multidimensional
because each voxel corresponds to a dimension in the sample space resulting in a space
of N dimensions where the number of voxels D may be typically in the thousands, if not
in the tens of thousands (e.g., an image with 25 x 25 x 25 voxels has 15625 dimensions).

We extend the same idea to dimensions much larger than two, in order to understand the
nature of the posterior distribution directly from the sample images. When a distribution
is determined to be uni-modal based on the cluster analysis one can try to estimate the
different moment parameters such as mean, co-variances etc. For a multi-modal
distribution on the other hand these parameters even though estimable, will lose their
intuitive contents. Nevertheless, it is still possible to empirically analyze each cluster as a
uni-modal distribution. For instance, in our example we may look at the frequency
distribution of the within-cluster distances defined as the distances from the cluster
members to the cluster center.

The problem of posterior inference is further complicated when we have discrete valued
image samples as is the case for the resistivity image space. One way to manage the
inference problem in these high-dimensional cases is to compute parameters of topical
interest in the image. For example, one may consider a feature space generated from an
image sample where the first set of features may consist of the number and sizes of the
connected regions of each of the possible resistivity values. The next set may give the (x,
y) coordinates of the location of their centroids and so on. Depending on the questions of
interest, these may give adequate information related to the samples. In other cases
however, the experimenter may be interested in the modes of the posterior distribution of
the sample space itself, where the samples are multidimensional N vectors and then
treating the mode-modal frequency pairs as a summary description of the posterior
distribution of the features under study.

We now discuss another methodology of posterior analysis that is suitable for multi-
modal and multi-dimensional category-valued distributions. In this approach, clusters
along with their sample space locations and frequencies are interpreted as meta-states. A
detailed description of this approach is presented in Sengupta and Ramirez (2003). Here
we summarize some of the key points. Clustering is a methodology focused upon
grouping samples from a distribution based on the similarity of the samples themselves,
or on the similarities of carefully chosen sample features. It is appropriate for the analysis
of multi-dimensional spaces and multi-modal distributions. Our clustering algorithm
attempts to group together samples that are similar to one another, thereby providing a
good summary of the posterior distribution under study. The clustering process is
implemented by measuring the distance d in state space between two given images or
between an image and a cluster center. The former simply expresses how much global
dissimilarity exists between two sample images whereas the distance d in the later case is
defined in terms of the distance of the sample from the ‘cluster histograms.’ A cluster
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histogram consists of an array of distributions with each voxel distribution constituting an
element of the array. Each voxel distribution in turn is based on the frequency
distribution of different categories within the cluster samples for that voxel. In terms of
the image samples with categorical value, this entails the computation of a global
measure of d between an image and a cluster of images that tells one how much overall
dissimilarity exists between the two. In computing the sample-cluster ‘distance’, we look
at the global (including all pixels or volume elements) marginal distribution vector and
compute how similar a given image sample is compared to the distribution of the voxels
in a cluster.

This algorithm will find the cluster zones and their corresponding frequency(ies) of the
(possibly) multi-modal distribution. The cluster frequency is proportional to the cluster
probability because the Metropolis Hastings algorithm samples the state space at a rate
that is proportional to the posterior probabilities. We use the cluster location (i.e., the
mean in the continuous case or the mode in the discrete case) along with the cluster
frequency as the best summary representation for each cluster. In our approach the
number of clusters is allowed to vary during clustering based on the internal
configuration of elements in the clusters as well as the distance between adjacent clusters
in state space. This approach allows the experimenter the opportunity to examine the
most likely configuration of the resistivity structure at a given location, ranked according
to their probabilities.

We used this clustering approach to analyze some of the posterior distributions described
earlier. Figure 10 shows the cluster analysis results for the sand-lead target experiment.
The upper left image shows a vertical slice through the target. The upper right image
shows the mean resistivity ratio obtained when a uni-modal posterior distribution is
assumed. The bottom row of images shows the results of clustering analysis assuming a
multi-modal distribution. These are the cluster centroids (mean resistivity ratio) for the
three most likely (three highest frequencies) clusters. The frequency values have been
normalized relative to the number of posterior distribution samples (4302) to obtain
relative frequency values for each cluster. The bottom left image represents the centroid
for the most frequent cluster: four out of every five samples come from this part of the
state space.  Note that the location, and size of the cluster centroid are similar to the
target. The maximum value resistivity ratio magnitude is about 2.48 while the target
value is 2.51. The middle and right bottom row images represent centroids for low
frequency clusters. The middle image shows two closely spaced anomalies that straddle
the target’s elevation and a resistivity ratio value (16.0) that is substantially larger than
the target. The bottom right image also shows an anomaly shape that is significantly
different from the target and has a maximum resistivity ratio value (16.0) that is
substantially larger than the target.

We believe that the results shown in Figure 10 illustrate the value of multi-cluster
analysis. When we perform a multi-modal analysis, the resistivity ratio for the most
frequent cluster is about 2.48, close to the target value of 2.51. If we assume a uni-modal
distribution, the value is about 3.0, a poorer match to the target, because all samples have
lumped into a single cluster. The multi-cluster analysis segregates posterior samples with
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lower and higher values into separate clusters, thereby improving the accuracy of the
resistivity value corresponding to the most frequent cluster (bottom left cluster in Figure
10). Similar comments apply to the size, location and shape of the cluster anomalies.

Cluster analysis allows us to analyze the variability and uncertainty that is supported by
the available data. It provides the basis for the objective analysis of alternative models
when the available information isn’t sufficient to uniquely identify the system under
study. Furthermore, the consequences due to sources of uncertainty such as measurement
error, and lack of sensitivity or resolution are explicitly analyzed with by this approach.

The tank leak results were also analyzed using our clustering approach. Figure 11 shows
the results obtained for the case where 2160 liters had been released. The left column of
graphs displays the three most likely cluster centroids with frequencies ranging from 0.12
to 0.38. These three clusters encompass 68 % of all posterior distribution samples. We
note that all of them suggest a roughly vertical anomaly directly below the release point
to depths ranging from 8 – 10 m.

The clusters in Figure 11 helps the analysts identify alternate models that are consistent
with available data and their corresponding probabilities. The left column of frames show
the voxel-wise mean resistivity ratio for the top three most probable clusters. The
frequency values shown have been normalized relative to the number of posterior
distribution samples (3802) to obtain relative frequency values for each cluster. Clusters
A and B suggest that a strong vertical anomaly exists just East of the release point.
Cluster A suggests the possibility of liquid ponding to the West of the release point at a
depth of about 8m. Likewise, cluster C suggests a wider but somewhat weaker anomaly.
An analyst could consider cluster A as the most likely thereby inferring a pillar-shaped
vertical invasion zone with possible liquid ponding to the West of the release point at 8m
depth. Considering clusters A and B, the analyst may also infer that the bulk of the
contamination lies below and to the East of the release point.

The right column of frames in Figure 11 shows the center states for the clusters shown.
These center states are those posterior samples having the smallest distance d to the
cluster’s center point. We can use the centers states as a way to evaluate a cluster’s
central tendencies. These central tendencies should be unaffected by the variability of
such properties within a cluster; clearly, this variability affects the mean values shown in
the left column of frames in Figure 11. The center states for clusters A and B show
similar location and shape as the cluster mean image. However, the mean for cluster A
suggests the possibility of liquid ponding to the West of the release point at a depth of
about 8m whereas the cluster center state does not show such features. This means that
the possible ponding of liquid is not part of the central tendency for cluster A, but is a
part of some of the states around the cluster center.  The center state for cluster B
suggests a stronger resistivity change (0.03) than the values near 0.2 indicated by the
cluster’s mean.

The clustering analysis described here allows an analyst to consider alternate hypotheses
that are consistent with all available data, and their corresponding probabilities. Tank
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operators can take into account these alternate hypotheses when deciding among
environmental management alternatives that mitigate contaminant spreading or clean-up
the subsurface.

Computational expense – parallel computing
The MCMC method we have used is computationally expensive. For example, a tank
leak problem involving 28800 voxels and 128 transmitting electrodes and a typical work
station with one CPU, will require about 45 days to accumulate a sufficient number of
posterior samples (about 4000). Almost all of that time is used to solve the forward
problem. In comparison, a deterministic inversion of the same problem using the same
workstation may take 8 – 12 hours.
Clearly, parallel computation of the forward problem is required to make the MCMC
approach practical. We have parallelized the problem in two ways: 1) each of the
individual Markov chains is run on separate processors. 2) the computational load for
each chain is further distributed amongst multiple processors by computing the potential
field due to each transmitter electrode on separate processors. The potential fields are
then post-processed to compute the transfer resistances associated with individual
readings. When 128 processors are used, this approach reduces the processing time to
about 12 hours. Processing times of 12 hours are acceptable for many real-life
applications of the MCMC approach.

Conclusions:
We have discussed a stochastic methodology for Bayesian inversion of changing
subsurface electrical resistivity data. This methodology, called the Stochastic Engine, is
based upon Bayesian inference and is implemented via a Markov Chain Monte Carlo
algorithm. The inversion of electrical resistivity data is an ill-posed problem requiring
regularization.  Our approach makes use of prior information to sufficiently reduce the
size of the space of feasible solutions in order to mitigate ill-posedness. The base
representation consists of up to ten blocky regions of resistivity change embedded within
an unchanging volume. Additional information can include the sense of the change
(increasing or decreasing resistivity), upper/lower bounds for the volume of the changing
region, resistivity change magnitude and spatial relationships of the trapezoidal regions
(e.g., requiring partially overlapping or contiguous blocks).

We have tested the performance of the SE algorithm using a series 3D physical models
and a field experiment. The performance tests indicate that the algorithm locates the most
likely location(s), shape(s), and volume of the changing region(s). This Bayesian
reconstruction technique appears to produce robust results when noisy field data is used.
The method also allows the use of disparate data types (e.g. measurements of the volume
of the liquid infiltrating the subsurface, geophysical logs indicating changing conditions
along a borehole) to constrain the posterior probabilities.

In contrast to conventional methods of inverting for resistivity change, the aim of the SE
methodology is to estimate the a-posteriori distribution defined over the entire space of
feasible solutions instead of simply finding a single estimate of the unknown resistivity
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distribution. The SE approach is particularly useful when prior information is available,
alternate models consistent with the data are desired, and measures of resolution and
solution uncertainty are needed.

We have briefly discussed metrics that indicate when the samples generated from the
MCMC simulation are truly representative of the posterior distribution and hence capable
of supporting inference. . We have also discussed a categorical clustering technique that
partitions posterior distribution samples into multiple clusters whose members have
similar characteristics. Cluster analysis allows the identification of multiple modes (i.e.,
alternative system configurations that are consistent with available data) and their
associated probabilities.

The method is computationally intensive. For example, the Hanford results previously
discussed required computation times of approximately 12 hours using a 128 CPU
parallel machine. The availability of large parallel computers greatly reduces the required
processing times; making the approach more practical for real life applications.

We view the SE and the deterministic inversion methodologies as complementary
approaches. The deterministic method is likely to be the preferred method when little or
no prior data is available, a single data type is being inverted, and when fast inversion
times are required. The SE method is most useful when inverting problems with many
secondary extrema, contradictory or sparse data, with multiple data types, and problems
having useful prior information. The SE method is also a good choice for problems where
the linearization of a non-linear problem must be avoided, explicit estimates of solution
uncertainty are required, and alternate models that consistent with the data are desired.
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Figure 1. The left side shows a schematic diagram of our stochastic inversion algorithm.
The method uses multiple data types, arranged in stages. The right side shows the impact
that the MCMC search has on the posterior distribution’s likelihood surface.
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Figure 2 shows a schematic representation of the physical model set up. Four vertical
electrode arrays were immersed in a fiberglass water tank. Various objects were inserted
between the arrays at a variety of locations and ERT data collected.
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Figure 3 shows a comparison of stochastic and deterministic inversions. The target
configuration is shown in the upper left frame, and the stochastic result shown by the top
middle and right frames. The bottom row of frames shows the deterministic result. The
white bar overlaying the blue color bar indicates the range of transparent values used to
construct the iso-surfaces.
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Figure 4 shows stochastic inversion results for the cases where the acrylic target is
present and absent. The top two frames show iso-surfaces of the target and the
corresponding inversion result. The bottom frames show vertical slices through the
inversion block for cases of the target present (bottom left) and absent (bottom right). The
white bar overlaying the blue color bar indicates the range of transparent values used to
construct the iso-surfaces.
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Figure 5 shows a schematic layout of the leaking tank site. Hypersaline brine solution
was released from a point near the center of the tank’s bottom. Sixteen vertical arrays of
electrodes were used to monitor the infiltration process.
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Figure 6 compares stochastic (left frames) and deterministic inversions (right frames).
The top row of images consists of a series of vertical slices oriented parallel to North-
South line. The bottom row shows iso-surfaces). The white bar overlaying the blue color
bar indicates the range of transparent values used to construct the iso-surfaces.
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Figure 7 displays stochastic results obtained as a function of brine volume released. The
left column shows voxel-wise location probabilities. The middle column shows the
voxel-wise average resistivity ratio, and the right column of images shows the same
results as iso-surfaces.
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Figure 8 presents histograms of two parameters of interest as function of released brine
volume. The left column of graphs shows the probability distribution for the coordinates
of the center of resistivity change (equivalent to a center of mass). The right column
shows the probability distribution of the volume of the invaded zone.
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Figure 9. The right side shows a schematic diagram illustrating some of key ideas
pertaining to Markov chain convergence: burn-in period and all chains sampling all
posterior distribution modes. The left side shows plots of two metrics used to assess
Markov chain convergence.
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Figure 10 presents clustering analysis results for the case of the sand-lead target. The top
left frame shows a vertical slice through the target. The right frame shows the voxel-wise
average resistivity obtained when a uni-modal posterior distribution is assumed. The
bottom frames shows the average resistivity ratio obtained when a multi-modal
distribution is assumed. The three most probable clusters and their corresponding
frequencies are shown.
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Figure 11 displays clustering analysis results corresponding to the tank release
experiment. The left column of frames show the voxel-wise average resistivity ratio for
the top three most probable clusters. The right column of frames shows the center state
for the three most probable clusters.



42


